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ABSTRACT

The first temperature derivatives of the fundamental elaatic constants
of quartz are employed along with the thermally-induced biasing strains in
the equation for the first perturbation of the eigenvalue for the linear
electroelastic equations for small fields superposed on a bias to calculate
the resulting change in surface wave velocity with temperature. Since the
description employed is referred to a fixed reference state, the geometry
does not change and the temperature coefficient of velocity is the negative
of the temperature coefficient of delay. In all earlier work a variable
temperature dependent geometric state was considered, but the attendant
shearing or skewing of the coordinate axes was not properly included. The
temperature dependence of the velocity of surface waves propagating in
various directions on various cuts of quartz is obtained. For cases in

which measurements are available the calculations are shown to be in sub-

stantially better agreement with the measurements than previous calculations.
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1. Introduction

Previous workl’z on the temperature dependence of the velocity of
surface waves in quartz has employed the temperature derivatives of the
effective elastic constants of quartz, which are referred to the variable
temperature dependent intermediate position rather than the fixed reference
position, to which the fundamental elastic constants are referred. Not only
does the intermediate coordinate system extend or contract under a tempera-
ture change, but it shears or skews as well., This shearing or skewing of
the axes was omitted in the original determination3 of the temperature
derivatives of the effective elastic constants., Although, in the existing
treatmentsl’2 of the temperature dependence of surface wave velocity, the
change in density and path length were properly included, the shearing or
skewing of the coordinate axes was omitted.

Recently, the first temperature derivatives of the fundamental elastic
constants of quartz were determined4 from the original data3 from which the
temperature derivatives of the effective constants had been obtained3. Also,
a perturbation analysis of the linear electroelastic equations for small
fields superposed on a bias5 has been performed6 and the equation for the
first perturbation of the eigenvalue has been obtained. The aforementioned
first temperature derivatives of the fundamental elastic constants of quartz
are employed along with the thermally-induced biasing strains in the equation
for the first perturbation of the eigenvalue6 to calculate the resulting
change in surface wave velocity with temperature.

Since the description employed is referred to the fixed reference state
at the reference temperature, the mass density and geometry do not change and
the temperature coefficient of natural velocity, which we determine, is the

negative of the temperature coefficient of delay. The temperature dependence




2.

of the actual, in addition to that of the natural, velocity of surface waves
on a number of cuts of quartz is obtained and compared with the previous
calculations as well as measured values, In addition, the temperature
coefficient of delay and the associated power flow angle are calculated as
a function of propagation direction for two interesting orientations of
quartz substrates, All results obtained here are limited to linear behavior
with temperature because only the first temperature derivatives of the
fundamental elastic constants of quartz are known4. As noted in an earlier
work7 the surface wave velocity can also be obtained simply by solving the
appropriate linear surface wave boundary value problem in the usual manner
at both the reference temperature and present temperature when the tempera-
ture dependent constants have been determined at the present temperature,
The perturbation procedure is being employed here because it enables the
change in surface wave velocity to be calculated directly, thereby resulting
in greater accuracy for the same number of significant figures and a sub-

stantial reduction in computer time,

2. Linear Electroelastic Equations for Small Fields Superposed
on a Thermally Induced Bias

The linear electroelastic equations for small fields superposed on a

bias may be written in the forms’6

v (o]
Ky, 1= P 4> 3L,L-0, (2.1)
where, since only mechanical nonlinearities are of interest here,

Koy = Soymv®y, u* Cury® w2

‘bL'emv“v,M’em‘P,u’ (2.2)




T

Ly R R WS TR LR E ) VT Do SR

and

?DYHV - SLYW+ cwm-& (dswnv/d'l‘) (T - '1‘0) R

. 1 1
Crymy ™ Ty * Stymvastas * Srviy, k * Suon'y, x

(2.3)

Equations (2.1) constitute the strxess equations of motion and charge equation
of electrostatics referred to the position coordinates of material points
before the thermally induced static deformation is applied, which are called
reference coordinates and are denoted by xM Equations (2.2) are the linear
electroelastic constitutive equations and Eqs, (2.3) contain the definitions
associated with the effective elastic coefficients appearing in (2.2), 1In
(2.1) - (2.3) ’RLY’ 31. and u.Y denote the components of the small field Piola-
Kirchhoff stress tensor which is asymmetric, reference electric displacement
vector, and mechanical displacement vector, respectively; p° and ?ﬁ denote
the reference mass density and small field electric potential, respectively,
denote the second and third order elastic constants,

Stymv 2™ Srymvan
respectively, ermy and €M denote the piezoelectric and dielectric constants,
respectively, and '1‘o and T denote the reference and present temperature,
respectively.

In this description the present position y of material points is re-

lated to the reference position X by
x(XL,t)=§+g(XL) +2(XL,t) s (2.4)

where v denotes the displacement due to the thermally induced static deforma-
tion. In (2.3) T:.M and E;B denote the components of the thermally induced
static biasing stress and strain, respectively, and for small strains and

changes in temperature from the reference temperature 'ro, we have4
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(T-T), (2.6)

1 1
Tim * Stars®rs ~ Vin

where Vim denotes the thermoelastic coupling coefficients, which are related

to the usual coefficients of linear thermal expansion ¥y by

Vin= Sk - (2.7)

The upper cycle notation for many dynamic variables and *he capital Latin
and lower case Greek index notation are being employed for consistency with
the notation of Refs.5 and 6, as is the remainder of the notation in this
section., The fact that the capital lLatin and lower case Greek indices refer
to the reference and intermediate position coordinates, respectively, is not
important here and in this work they may be used interchangeably. We employ
Cartesian tensor notation, the summation convention for repeated tensor
indices, the convention that a comma followed by a Latin index denotes
partial differentiation with respect to reference coordinates and the dot
notation for differentiation with respect to time. Since we are considering
a homogeneous stress free biasing state resulting from a homogeneous temper-
ature change (T-To), from (2.6) and (2.7) we obtain

1
ERS = aRS(T—TO) . (2.8)

Since it has been shv:vwn4 that a static homogeneous infinitesimal rigid rota-
tion has no influence on any results, without any loss in generality we may
choose the homogeneous rigid rotation to vanish and substitute from (2.8)

into (2.3)2 to obtain

~

Crymv ™ §rymvas®as * Soywlvk Sty (T-T) - (2.9)




3. Perturbation Equations

. . . For purely elastic nonlinearities, which are the only ones of interest

here, the equation for the first perturbation of the eigenvalue obtained from
the perturbation analysis8 mentioned in the Introduction may be written in

the form

av/v, =B /262, vav v, (3.1)

where V, and V are the unperturbed abd perturbed surface wave velocities at

1
To and T, respectively, £ is the unperturbed propagation wavenumber and

1=+£1{ng,Lav, (3.2)

L where R is the volume enclosed in a wavelength in a unit length of the sur-
face wave from the top of the substrate down. In (3,2) 9y denotes the nor-
malized mechanical displacement vector, and EEY denotes the portion of the
Piola-Kirchhoff stress tensor resulting from the biasing state and the change
in the elastic constants ASEYMU with temperature in the presence of the gY,

and is given by

x{y = Crymy* Bryme T, 7 (3.3)
where
Agw - (dgmm/d'r) (T-T), (3.4)

and the dgnYMa/dT are the first temperature derivatives of the fundamental
elastic constants of quartz, which are tabulated in Ref.4. The normalized
eigensolution gY and f is defined by

n 9 = ;} , £= % , ¥ = I pouYquV, (3.5)
v
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where “Y and 5 are the mechanical displacement and electric potential,

respectively, which satisfy the equations of linear piezoelectricity, i.e.,

Egs. (2.1) and (2,2), with (2,3) and (2.9), at 'r='1‘° subject to the boundary
conditions

NLKLY=O, -NL.DL=e°§<p, at N X =0, (3.6)
at T=T_,the first of which, with (2.2),, (2.3) and (2.9), takes the form

N Srymv v, Cury® ) =0 - 3.7

The second equation in (3.6) is a c:onsequence9 of Laplace's equation in free
space, the two electrical continuity conditions at the surface of the sub-
strate and the form of the surface wave solution appearing in (4.1). 1In
(3.6) and (3.7) N denotes the unit normal to the free surface of the sub-~

strate at 'I'='I‘o and eo is the permittivity of free space.

4. Temperature Dependence of Surface Wave Velocity

A schematic diagram of the free surface of the substrate at the refer-
ence temperature 'I'='1‘° is shown in Fig.l. The solution for surface waves
propagating in the XT-direction may be written in the form

4 .
. : iB_EX_ iE(X -V, t)
(@, = ) C‘“"(A;“‘),B‘“‘Ue mTYe T 1 4.1)
m=1

where the unperturbed surface wave velocity Vl at '1‘=Tc> is determined numer-
ically by trial and error so that (2.1) and (3.6), with (2.2), (2.3) and (2.9), at l
T=To are satisfiedlo-lz. When Vl is obtained the equations determine the

Bm’ A;m), B(m) and C(m). Since the straight-crested surface wave solution ﬁ

depends only on the two coordinates XT and xv, for integration over a wave-

length Eq. (3.2) takes the somewhat reduced form

sad

‘
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dx,, I dax [ T 'r t vgv,'r"'x'rcgc,'r
~m/§

+ Ki:-rg'r, vt ngv, vt Kvago, v] ’ 4.2)
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where X denotes the axis normal to X and X and in (4.2) we have introduced
the convention that repeated Greek indices are not to be summed. For this

case of surface waves the normalization integral in (3.5)3 takes the form

® n/E 4 4 (m) n) p\((n)*
= J u,YuY dx = 2 2 " ’ (4.3)
o -n/E m=1 n=1 Bn)

where the ¥ denotes complex conjugate. The substitution of (4.1) and (4.3) into
(3.5):1 which, with (2.9) and (3.4), is then substituted into (3.3), which is

then substituted along with (3.5)1 into (4.2), the integration of which

yields the expression for Hl’ which enables the change in surface wave

is

velocity to be calculated from (3.1). The resulting expression for Hl

extremely lengthy and not terribly revealing. Consequently, we do not
bother to present it here. Nevertheless, it is clear from (4.2) and (3.3),
with (3.4) and (2.9), along with (3.5)1, (4.1) and (4.3) that the resulting

. . : . 3 :
express.on for H, is linear in (T-—Tb), depends on the second1 and th1rd14

1
order elastic constants, the coefficients of linear expansion15 and the recently
determined4 first temperature derivatives of the fundamental elastic constants
of quartz, as well as on the known surface wave solution at T==T°, which

depends on the linear piezoelectric constantsl3.

The change in velocity AV determined from (3.1) is the change in

natural16 velocity, which is related to the measured unchanged geometry at

T==T°. Since it is not feasible to continually measure the changing lengths

with temperature and time intervals are usually measured rather than the




actual velocity of the wave, the natural valc»:.u:yl6 is the most purposeful

one to define. However, since previous workers have employed the change in
actual velocity calculated from the measurements, we will calculate the
change in actual velocity from the change in natural velocity. The relation

between them is”

1
AV, /V) = AV/V) +E_, T no sum, 4.4)

where the repeated Greek indices in (4.4) are not to be summed and Ava is
the change in actual velocity as defined in the Appendix., Since reference
coordinates and natural velocity are employed here, the geometry remains

fixed and the temperature coefficient of delay (TCD) is given by
TCD= AT/T(T~=T ) ==-4V/V,(T-T)), (4.5)

where T is the delay time. Equation (4.5) shows that when reference coordi-
nates and natural velocity are employed, the temperature coefficient of delay
is simply the negative of the temperature coefficient of velocity. Substi-

tuting from (4.4) into (4.5) and employing (2.8), we obtain
TCD = ~ Ava/Vl(T-To) +a.,., T no sum, (4.6)

which is the well~known usual relation between the TCD and the temperature
coefficient of actual velocity referred to the variable temperature dependent
intermediate configuration of the crystal.

Calculations have been performed for various propagation directions on
various orientations of quartz substrates and the results are plotted in
Figs.2 -8, Figures 2 and 3 show the TCD and AVa/V1 (T-'I'o) as a function of
propagation direction for surface waves on AT-cut and AC-cut quartz substrates,
respectively, at 25°C, The dotted curve shows the average of the calculated
values at 0°C and 50°C from Ref.l and the circles are the average of the

experimental values at 0°C and 50°C also from Ref.l. It is clear from




Figs.2 and 3 that the calculationes performed here using the proper nonlinearly

based formalism are in substantially better agreement with the experimental
data of Ref.l than the calculations performed in Ref.l using an incomplete
linearly based description. Pigure 4 shows the calculated TCD for surface
waves propagating along the digonal axis of rotated Y-cut quartz substrates
as a function of rotation angle at 25°C., The dotted curve is obtained from
the calculations of Ref,1 in the same manner as in Figs.2 and 3. Figures 5
and 6 show the calculated TCD as a function of propagation direction for
surface waves on X-cut and Y-cut quartz substrates, respectively, at 25°c.
The dotted curves are obtained from the calculations of Ref.l in the same
manner as in Figs.2 and 3. Fiqures 7 and 8 show the temperature coefficient
of delay and associated power flow angle as a function of propagation direc-
tion for two particularly interesting orientations of doubly-rotated quartz
supbstrates, namely those having'® =30, 6 = 34,25° and ¢=5°, 0 = 47.7,

respectively.
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FIGURE CAPTIONS

Schematic Diagram Showing the Free Surface of a Semi-
Infinite Solid

Temperature Coefficients of Actual Velocity and Delay for
Surface Waves on AT-Cut Quartz as a Function of Propagation
Direction Relative to the Digonal Axis at 25°C. The dotted
curve shows the average of the calculated values at 0°Cand
50°C from Ref.l. The circles are the average of the experi-
mental values at 0°C and 50°C from Ref.l

Temperature Coefficient of Actual Velocity and Delay for
Surface Waves on AC-Cut Quartz as a Function of Propagation
Direction Relative to the Digonal Axis at 25°C. The notation
convention is the same as in Fig,.2,

Temperature Coefficient of Delay for Surface Waves Propa-

gating along the Digonal Axis of Rotated Y~Cuts of Quartz

as a Function of Rotation Angle at 25°C. The notation convention
is the same as in Fig.2.

Temperature Coefficient of Delay for Surface Waves on X-Cut
Quartz as a Function of Propagation Direction Relative to
the Y-Axis at 25°C. The notation convention is the same
as in Fig. 2.

Temperature Coefficient of Delay for Surface Waves on Y-Cut
Quartz as a Function of Propagation Direction Relative to
the X-Axis at 25°C. The notation convention is the same
as in Figq.2,

Temperature Coefficient of Delay and Power Flow Angle as a
Function of Propagation Direction Relative to the Axis of
Second Rotation at 25°C for the Doubly-Rotated Cut of
Quartz Having ¢=5°, 6=47.7.

Temperature Coefficient of Delay and Power Flow Angle as
a PFunction of Propagation Direction Relative to the Axis
of Second Rotation at 25°C for the Doubly-Rotated Cut of
Quartz Having @=30°, 6=34,25°,

Schematic Diagram Showing the Relation Between the Surface
Normal and Surface Wave Propagation Direction and Wave-

length in the Undeformed Reference State at Temperature T
and the Deformed State at Temperature T. °
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APPENDIX

In this Appendix we derive the relation between the change in actual
H » and change in natural velocity for surface waves, The procedure employed
follows that of "l‘l'mz'st:on19 who treated plane waves. The treatment of the
surface wave case is a bit more cumbersome because of the existence of the
free surface. Consequently, in this Appendix the distinction between capital
Latin and lower case Greek indices is important.

Let v, and oy be unit vectors normal to the surface and in the direction

f o 'y
of the phase fronts of the surface wave, respectively, both at temperature T,

as shown in Fig.9. Clearly, then the propagation direction 'r'.Y is given by

e naxxg’ﬂY'eYdﬁvO’OB’ (al)

where er!B is a skew-symmetric tensor. In the undeformed state at tempera-
ture To the unit vectors vy and ¢ were in the directions N and S, respectively,
- in Fig.9. We denote the vector orthogonal to N and § by P, which ig in the

natural propagation direction, and we write

P=NXS§S, P =E (A2)

X KIMNLSH’
where Elcm is a skew-symmetric tensor. In the deformation accompanying the
temperature change from To to T the line element in the direction Pat To
takes the direction y at T, which in general differs from the direction T,
The intermediate directions y, ¢ and 4 may be expressed in terms of the

reference directions N, S and P by means of the relationszo

N X g S g, P
LLY LL LL
M e——— W dm— B et A3
Um0 N T e W T ey a3

where




“

A2
(N) - (s) (p) Pe o
B = vBCafm » € V5%l € 2l (M)
and
-1
Cou™ S, 150,17 Crn™ ¥k o, ? (AS)

where §Y=-§Y(XR) is the intermediate coordinate at T and is related to the
quantities appearing in (2.4) by

€™ Sor Xt W) (A6)
where 6aL is a Kronecker delta, which is required for consistency with the
notation employeds,and a comma foilowed by a Greek index, say B, denotes

partial differentiation with respect to the intermediate coordinate §B.

Substituting from (A3) into (Al), we obtain

(N) _(S)
My = yes¥r, oS8, KB C 5 (A7)

which is clearly different from (A3)3.

Since the natural (or reference) wavelength L is in the direction P,

from deformation theoryzo and (A3)3, we have

lp,y = EY, KPKL ’ (A8)
where £ is the deformed length that was L when undeformed and

Inasmuch as L is the undeformed (or reference) distance between two phase
fronts, £ is the deformed line between the same two (deformed) phase fronts,

which, however, is not normal to the phase fronts because

&-g#o. (A10)

Since the distance between two deformed phase fronts normal to the phase

fronts is the actual wavelength ), the component of IQ in the direction n is




the actual wavelengthlg, and we have
A=fyem. (All)
Substituting from (A7) and (A8) into (All) and rearranging terms, we obtain

(N)C(S) .

A= LeYaBE B, KEY, MPMSKNLXL, a/B (A12)
Utilizing the well-known relationszo
e ofe E -J'E E. X =8 (A13)
s8v5s, 858, Kov, M~ 7 Prrm’ S5, 8%, 0" Sat |
we obtain
pv55, K5y, u” JIXR’ Faxe? (A24)
where, of course
1
J = det gg’T . (A15)
Substituting from (Al4) into (Al2) and rearranging terms, we obtain
1 (N) _(8)
A=LJ ER]CMSKPMXR, “xL’ aNL/B C s (A16)
which, with
SXP=N, EpSPu=Nr’ (A17)
and (A4)1 and (A5)2, yields
r=18 M/ (A18)

which holds for arbitrarily large deformations., Before reducing to infinites-
imal deformations we record the well-known relation

1l 1l
Em =3 (Cm- 5.,..) . (Al9)
when the deformation is infinitesimal and terms higher than linear in

vy g ™Y be ignored, from (AS5), (A6) and (Al9) we obtain
1




\o—— -
[}

A4

1l
Em = ) ("x,u"'wu,x) N (A20)
CKM 6m+ ZEKM’ CKM 6!04 ZEKM . (A21)

Substituting from (A21l) into (Ad), utilizing the fact that N, S and P are
unit vectors and making a Taylor expansion of the radicals while retaining

only linear terms, we obtain

1
B(N)al-n(ml, C(S)=1+E(S)1, c(P)=1+E(P) , (A22)
where
(M1 1 (s)1 1 ®1_., .1
E = NKEmNM » E = SIFKMSM > B PIFKMPM N (A23)
and g™ l, !:‘.(s):L and E(P)l are the extensional strains in the directions

N, S and P, respectively. Similarly, substituting from (A6) into (AlS5),

expanding, retaining only linear terms in wL R
¢l

invariance of the trace of the strain tensor and (A23), we obtain

and employing (A20), the

Jl= 1+E(N)1+E(S)1+E(P)l.

(A24)
Finally, substituting from (A22) and (A24) into (Al8), making a Taylor ex-

pansion in the E(S)l

the E(.)l, we obtain

, multiplying out and retaining only linear terms in

(P)1

A=L(L+E '), (A25)

which is the equation that has always been employed without a complete
demonstration of its validity. Since the frequency is the same whether the

reference coordinates X at To or the deformed coordinates s at T are

employed, we have

VA = V/L, (R26)




AS

where va is the actual velocity and V is the natural velocity of the surface

wave. Since

V=V 44V, V=V +AV, (a27)

where Vl is the unperturbed velocity at '1‘o and both AVa and AV are small

compared with V., from (A25) - (A27), we have

1,
av
2= g™ (a28)
1 1
(P)1 . X
because E << 1, Equation (R28) is Eq. (4.4).

Since we have presented the treatment in this Appendix leading to
Eq. (A18), from which we have obtained the reduced form (A25) for the case
of infinitesimal strain, for completeness we record without proof the
limiting forms of v, g, u and [ for the case of infinitesimal strain. Wwhen
we ignore the distinction between lower case Greek and capital latin indices
these forms are;

1
VL= Nglby (T+E ) = o1,

(s)1
oLasK[GKL(l-E ) H'L,K] s

)+wL,K]’

L™ P SuSu¥k, P x * NN, k0 (A29)

(P)1
By = PKIBKL(I -E




